Papers
Topics
Authors
Recent
Search
2000 character limit reached

Qudit Clauser-Horne-Shimony-Holt Inequality and Nonlocality from Wigner Negativity

Published 23 May 2024 in quant-ph | (2405.14367v4)

Abstract: Nonlocality is an essential concept that distinguishes quantum from classical models and has been extensively studied in systems of qubits. For higher-dimensional systems, certain results for their two-level counterpart, like Bell violations with stabilizer states and Clifford operators, do not generalize. On the other hand, similar to continuous variable systems, Wigner negativity is necessary for nonlocality in qudit systems. We propose a new generalization of the CHSH inequality for qudits by inquiring correlations related to the Wigner negativity of stabilizer states under the adjoint action of a generalization of the qubit $\pi/8$-gate. A specified stabilizer state maximally violates the inequality among all qudit states based on its Wigner negativity. The Bell operator not only serves as a measure for the singlet fraction but also quantifies the volume of Wigner negativity. Additionally, we show how a bipartite entangled qudit state can serve as a witness for contextuality when it exhibits Wigner negativity. Furthermore, we give deterministic Bell violations, as well as violations with a constant number of measurements, for the Bell state relying on operators innate to higher-dimensional systems than the qudit at hand.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. Benjamin Schumacher. Quantum coding. Phys. Rev. A, 51:2738–2747, Apr 1995. doi:10.1103/PhysRevA.51.2738.
  2. Blind encoding into qudits. Physics Letters A, 372(12):1963–1967, 2008. doi:10.1016/j.physleta.2007.08.076.
  3. Subsystem stabilizer codes cannot have a universal set of transversal gates for even one encoded qudit. Phys. Rev. A, 78:012353, Jul 2008. doi:10.1103/PhysRevA.78.012353.
  4. No-go theorem for gaussian quantum error correction. Phys. Rev. Lett., 102:120501, Mar 2009. doi:10.1103/PhysRevLett.102.120501.
  5. Quantum solution to the byzantine agreement problem. Physical Review Letters, 87:217901–1–217901–4, 11 2001. doi:10.1103/PhysRevLett.87.217901.
  6. Graph states for quantum secret sharing. Phys. Rev. A, 78:042309, Oct 2008. doi:10.1103/PhysRevA.78.042309.
  7. Information flow in secret sharing protocols. Electronic Proceedings in Theoretical Computer Science, 9:87–97, November 2009. doi:10.4204/eptcs.9.10.
  8. Quantum secret sharing with qudit graph states. Phys. Rev. A, 82:062315, Dec 2010. doi:10.1103/PhysRevA.82.062315.
  9. How to share a quantum secret. Phys. Rev. Lett., 83:648–651, Jul 1999. doi:10.1103/PhysRevLett.83.648.
  10. J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1:195–200, Nov 1964. doi:10.1103/PhysicsPhysiqueFizika.1.195.
  11. Bell nonlocality. Rev. Mod. Phys., 86:419–478, Apr 2014. doi:10.1103/RevModPhys.86.419.
  12. Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett., 88:040404, Jan 2002. doi:10.1103/PhysRevLett.88.040404.
  13. Multisetting Bell inequality for qudits. Physical Review A - Atomic, Molecular, and Optical Physics, 78, 11 2008. doi:10.1103/PhysRevA.78.052103.
  14. Reexamination of a multisetting Bell inequality for qudits. Phys. Rev. A, 80:052116, Nov 2009. doi:10.1103/PhysRevA.80.052116.
  15. Bell inequalities tailored to maximally entangled states. Phys. Rev. Lett., 119:040402, Jul 2017. doi:10.1103/PhysRevLett.119.040402.
  16. Greenberger-Horne-Zeilinger paradoxes for many qudits. Phys. Rev. Lett., 89:080402, Aug 2002. doi:10.1103/PhysRevLett.89.080402.
  17. Greenberger-Horne-Zeilinger paradoxes from qudit graph states. Physical Review Letters, 110, 2013. doi:10.1103/PhysRevLett.110.100403.
  18. Jay Lawrence. Mermin inequalities for perfect correlations in many-qutrit systems. Phys. Rev. A, 95:042123, Apr 2017. doi:10.1103/PhysRevA.95.042123.
  19. Clauser-Horne inequality for three-state systems. Phys. Rev. A, 65:032118, Feb 2002. doi:10.1103/PhysRevA.65.032118.
  20. Three-qutrit correlations violate local realism more strongly than those of three qubits. Physical Review A - Atomic, Molecular, and Optical Physics, 66, 2002. doi:10.1103/PhysRevA.66.032103.
  21. Coincidence Bell inequality for three three-dimensional systems. Physical Review Letters, 92, 6 2004. doi:10.1103/PhysRevLett.92.250404.
  22. Nonclassicality of pure two-qutrit entangled states. Phys. Rev. A, 85:022118, Feb 2012. doi:10.1103/PhysRevA.85.022118.
  23. Entanglement of graph qutrit states. In 2011 International Conference on Intelligence Science and Information Engineering, pages 61–64, 2011. doi:10.1109/ISIE.2011.10.
  24. The power of qutrits for non-adaptive measurement-based quantum computing. New Journal of Physics, 25(7):073007, jul 2023. doi:10.1088/1367-2630/acdf77.
  25. Maximal nonlocality from maximal entanglement and mutually unbiased bases, and self-testing of two-qutrit quantum systems. Quantum, 3:198, October 2019. doi:10.22331/q-2019-10-24-198.
  26. The Problem of Hidden Variables in Quantum Mechanics, pages 293–328. Springer Netherlands, Dordrecht, 1975. doi:10.1007/978-94-010-1795-4_17.
  27. Quantum contextuality with stabilizer states. Entropy, 15:2340–2362, 2013. doi:10.3390/e15062340.
  28. D. Gross. Hudson’s theorem for finite-dimensional quantum systems. Journal of Mathematical Physics, 47, 2006. doi:10.1063/1.2393152.
  29. Contextuality and Wigner negativity are equivalent for continuous-variable quantum measurements. Phys. Rev. Lett., 129:230401, Nov 2022. doi:10.1103/PhysRevLett.129.230401.
  30. Contextuality supplies the ’magic’ for quantum computation. Nature, 510, 2014. doi:10.1038/nature13460.
  31. Equivalence between contextuality and negativity of the Wigner function for qudits. New Journal of Physics, 19, 12 2017. doi:10.1088/1367-2630/aa8fe3.
  32. Qudit versions of the qubit π𝜋\piitalic_π/8 gate. Physical Review A - Atomic, Molecular, and Optical Physics, 86, 8 2012. doi:10.1103/PhysRevA.86.022316.
  33. D. M. Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group. Journal of Mathematical Physics, 46(5):052107, 04 2005. doi:10.1063/1.1896384.
  34. D. M. Appleby. Properties of the extended Clifford group with applications to SIC-POVMs and MUBs, 2009. arXiv:0909.5233.
  35. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23:880–884, Oct 1969. doi:10.1103/PhysRevLett.23.880.
  36. Wikipedia. Dirichlet character — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Dirichlet_character, 2023. [Online; accessed 22-May-2024].
  37. Leonard Eugene Dickson. The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Annals of Mathematics, 11(1/6):65–120, 1896. doi:10.2307/1967217.
  38. Value sets of Dickson polynomials over finite fields. Journal of Number Theory, 30, 1988. doi:10.1016/0022-314X(88)90006-6.
  39. Finite Fields. Cambridge University Press, 10 1996. doi:10.1017/cbo9780511525926.
  40. On the two-term exponential sums and character sums of polynomials. Open Mathematics, 17:1239–1248, 1 2019. doi:10.1515/math-2019-0107.
  41. Boris S. Cirel’son. Quantum generalizations of Bell’s inequality. Letters in Mathematical Physics, 4:93–100, March 1980. doi:10.1007/BF00417500.
  42. Value sets of polynomials over finite fields. Proceedings of the American Mathematical Society, 119(3):711–717, 1993. doi:10.1090/S0002-9939-1993-1155603-2.
  43. Entanglement detection. Physics Reports, 474(1):1–75, 2009. doi:10.1016/j.physrep.2009.02.004.
  44. Encoding a qubit in an oscillator. Phys. Rev. A, 64:012310, Jun 2001. doi:10.1103/PhysRevA.64.012310.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.