Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep learning algorithm for data-driven simulation of noisy dynamical system

Published 22 Feb 2018 in physics.comp-ph, cs.LG, physics.data-an, and stat.ML | (1802.08323v2)

Abstract: We present a deep learning model, DE-LSTM, for the simulation of a stochastic process with an underlying nonlinear dynamics. The deep learning model aims to approximate the probability density function of a stochastic process via numerical discretization and the underlying nonlinear dynamics is modeled by the Long Short-Term Memory (LSTM) network. It is shown that, when the numerical discretization is used, the function estimation problem can be solved by a multi-label classification problem. A penalized maximum log likelihood method is proposed to impose a smoothness condition in the prediction of the probability distribution. We show that the time evolution of the probability distribution can be computed by a high-dimensional integration of the transition probability of the LSTM internal states. A Monte Carlo algorithm to approximate the high-dimensional integration is outlined. The behavior of DE-LSTM is thoroughly investigated by using the Ornstein-Uhlenbeck process and noisy observations of nonlinear dynamical systems; Mackey-Glass time series and forced Van der Pol oscillator. It is shown that DE-LSTM makes a good prediction of the probability distribution without assuming any distributional properties of the stochastic process. For a multiple-step forecast of the Mackey-Glass time series, the prediction uncertainty, denoted by the 95\% confidence interval, first grows, then dynamically adjusts following the evolution of the system, while in the simulation of the forced Van der Pol oscillator, the prediction uncertainty does not grow in time even for a 3,000-step forecast.

Citations (91)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.