Papers
Topics
Authors
Recent
Search
2000 character limit reached

Short note on the behavior of recurrent neural network for noisy dynamical system

Published 5 Apr 2019 in cs.NE, cs.LG, physics.comp-ph, and physics.data-an | (1904.05158v1)

Abstract: The behavior of recurrent neural network for the data-driven simulation of noisy dynamical systems is studied by training a set of Long Short-Term Memory Networks (LSTM) on the Mackey-Glass time series with a wide range of noise level. It is found that, as the training noise becomes larger, LSTM learns to depend more on its autonomous dynamics than the noisy input data. As a result, LSTM trained on noisy data becomes less susceptible to the perturbation in the data, but has a longer relaxation timescale. On the other hand, when trained on noiseless data, LSTM becomes extremely sensitive to a small perturbation, but is able to adjusts to the changes in the input data.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.