Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Learning for Effort Reduction in Interactive Neural Machine Translation (1802.03594v2)

Published 10 Feb 2018 in cs.CL

Abstract: Neural machine translation systems require large amounts of training data and resources. Even with this, the quality of the translations may be insufficient for some users or domains. In such cases, the output of the system must be revised by a human agent. This can be done in a post-editing stage or following an interactive machine translation protocol. We explore the incremental update of neural machine translation systems during the post-editing or interactive translation processes. Such modifications aim to incorporate the new knowledge, from the edited sentences, into the translation system. Updates to the model are performed on-the-fly, as sentences are corrected, via online learning techniques. In addition, we implement a novel interactive, adaptive system, able to react to single-character interactions. This system greatly reduces the human effort required for obtaining high-quality translations. In order to stress our proposals, we conduct exhaustive experiments varying the amount and type of data available for training. Results show that online learning effectively achieves the objective of reducing the human effort required during the post-editing or the interactive machine translation stages. Moreover, these adaptive systems also perform well in scenarios with scarce resources. We show that a neural machine translation system can be rapidly adapted to a specific domain, exclusively by means of online learning techniques.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Álvaro Peris (12 papers)
  2. Francisco Casacuberta (19 papers)
Citations (49)