Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Learning for Interactive Neural Machine Translation of Data Streams (1807.11243v2)

Published 30 Jul 2018 in cs.CL

Abstract: We study the application of active learning techniques to the translation of unbounded data streams via interactive neural machine translation. The main idea is to select, from an unbounded stream of source sentences, those worth to be supervised by a human agent. The user will interactively translate those samples. Once validated, these data is useful for adapting the neural machine translation model. We propose two novel methods for selecting the samples to be validated. We exploit the information from the attention mechanism of a neural machine translation system. Our experiments show that the inclusion of active learning techniques into this pipeline allows to reduce the effort required during the process, while increasing the quality of the translation system. Moreover, it enables to balance the human effort required for achieving a certain translation quality. Moreover, our neural system outperforms classical approaches by a large margin.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Álvaro Peris (12 papers)
  2. Francisco Casacuberta (19 papers)
Citations (59)

Summary

We haven't generated a summary for this paper yet.