Nikolskii constants for polynomials on the unit sphere (1708.09837v1)
Abstract: This paper studies the asymptotic behavior of the exact constants of the Nikolskii inequalities for the space $\Pi_nd$ of spherical polynomials of degree at most $n$ on the unit sphere $\mathbb{S}d\subset \mathbb{R}{d+1}$ as $n\to\infty$. It is shown that for $0<p<\infty$, [ \lim_{n\to \infty} \sup\Bigl{\frac{|P|{L\infty(\mathbb{S}d)}}{n{\frac dp}|P|{Lp(\mathbb{S}d)}}:\ \ P\in\Pi_nd\Bigr} =\sup\Bigl{ \frac{|f|{L\infty(\mathbb{R}{d})}}{|f|{Lp(\mathbb{R}d)}}:\ \ f\in\mathcal{E}pd \Bigr}, ] where $\mathcal{E}_pd$ denotes the space of all entire functions of spherical exponential type at most $1$ whose restrictions to $\mathbb{R}d$ belong to the space $Lp(\mathbb{R}d)$, and it is agreed that $0/0=0$. It is further proved that for $0<p<q<\infty$, [ \liminf{n\to \infty} \sup\Bigl{\frac{|P|{Lq(\mathbb{S}d)}}{n{d(1/p-1/q)}|P|{Lp(\mathbb{S}d)}}:\ \ P\in\Pi_nd\Bigr} \ge \sup\Bigl{ \frac{|f|{Lq(\mathbb{R}{d})}}{|f|{Lp(\mathbb{R}d)}}:\ \ f\in\mathcal{E}pd\Bigr}. ] These results extend the recent results of Levin and Lubinsky for trigonometric polynomials on the unit circle. The paper also determines the exact value of the Nikolskii constant for nonnegative functions with $p=1$ and $q=\infty$: $$\lim{n\to \infty} \sup_{0\leq P\in\Pi_nd}\frac{|P|{L\infty(\mathbb{S}d)}}{|P|{L1(\mathbb{S}d)}} =\sup_{0\leq f\in\mathcal{E}1d}\frac{|f|{L\infty(\mathbb{R}{d})}}{|f|_{L1(\mathbb{R}d)}} =\frac1{4d \pi{d/2}\Gamma(d/2+1)}.$$
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.