Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximal theorems for weighted analytic tent and mixed norm spaces (2407.08387v2)

Published 11 Jul 2024 in math.CV

Abstract: Let $\omega$ be a radial weight, $0<p,q<\infty$ and $\Gamma(\xi)=\left{z\in\mathbb{D}:|\arg z-\arg\xi|<(|\xi|-|z|)\right}$ for $\xi\in\overline{\mathbb{D}}$ . The average radial integrability space $Lq_p(\omega)$ consists of complex-valued measurable functions $f$ on the unit disc $\mathbb{D}$ such that $$|f|q_{Lq_p(\omega)}=\frac{1}{2\pi}\int_{0}{2\pi}\left(\int_{0}{1}|f(re{i\theta})|p\omega(r)r\,dr\right){\frac{q}{p}}d\theta <\infty,$$ and the tent space $Tq_p(\omega)$ is the set of those $f$ for which $$|f|q_{T_{p}{q}(\omega)}=\frac{1}{2\pi}\int_{\partial{\mathbb{D}}}\left(\int_{\Gamma(\xi)}|f(z)|p\omega(z)\frac{dA(z)}{1-|z|}\right){\frac{q}{p}}\,|d\xi|<\infty.$$ Let $\mathcal{H}(\mathbb{D})$ denote the space of analytic functions in $\mathbb{D}$. It is shown that the non-tangential maximal operator $$f\mapsto N(f)(\xi)=\sup_{z\in\Gamma(\xi)}|f(z)|,\quad \xi\in \mathbb{D},$$ is bounded from $ALq_p(\omega)=Lq_p(\omega)\cap\mathcal{H}(\mathbb{D})$ and $ATq_p(\omega)=Tq_p(\omega)\cap\mathcal{H}(\mathbb{D})$ to $Lq_p(\omega)$ and $Tq_p(\omega)$, respectively. These pivotal inequalities are used to establish further results such as the density of polynomials in $ALq_p(\omega)$ and $ATq_p(\omega)$, and the identity $ALq_p(\omega)=ATq_p(\omega)$ for weights admitting a one-sided integral doubling condition. It is also shown that the boundedness of the classical Bergman projection $P_\gamma$, induced by the standard weight $(\gamma+1)(1-|z|2){\gamma}$, on $Lq_p(\omega)$ and $Tq_p(\omega)$ with $1<q,p<\infty$ is independent of $q$, and is described by a Bekoll\'e-Bonami type condition.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com