2000 character limit reached
Hybrid bounds for twists of $GL(3)$ $L$-functions (1705.00804v1)
Published 2 May 2017 in math.NT
Abstract: Let $\pi$ be a Hecke-Maass cusp form for $SL(3,\mathbb{Z})$ and $\chi=\chi_1\chi_2$ a Dirichlet character with $\chi_i$ primitive modulo $M_i$. Suppose that $M_1$, $M_2$ are primes such that $\max{(M|t|){1/3+2\delta/3},M{2/5}|t|{-9/20}, M{1/2+2\delta}|t|{-3/4+2\delta}}(M|t|){\varepsilon}<M_1< \min{ (M|t|){2/5},(M|t|){1/2-8\delta}}(M|t|){-\varepsilon}$ for any $\varepsilon>0$, where $M=M_1M_2$, $|t|\geq 1$ and $0<\delta< 1/52$. Then we have $$ L\left(\frac{1}{2}+it,\pi\otimes \chi\right)\ll_{\pi,\varepsilon} (M|t|){3/4-\delta+\varepsilon}. $$