Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Geometry of Uncertainty Relations for Linear Combinations of Position and Momentum (1703.06563v2)

Published 20 Mar 2017 in quant-ph

Abstract: For a quantum particle with a single degree of freedom, we derive preparational sum and product uncertainty relations satisfied by $N$ linear combinations of position and momentum observables. The state-independent bounds depend on their degree of incompatibility defined by the area of a parallelogram in an $N$-dimensional coefficient space. Maximal incompatibility occurs if the observables give rise to regular polygons in phase space. We also conjecture a Hirschman-type uncertainty relation for N observables linear in position and momentum, generalizing the original relation which lower-bounds the sum of the position and momentum Shannon entropies of the particle.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.