State-independent Uncertainty Relations and Entanglement Detection (1709.03780v2)
Abstract: The uncertainty relation is one of the key ingredients of quantum theory. Despite the great efforts devoted to this subject, most of the variance-based uncertainty relations are state-dependent and suffering from the triviality problem of zero lower bounds. Here we develop a method to get uncertainty relations with state-independent lower bounds. The method works by exploring the eigenvalues of a Hermitian matrix composed by Bloch vectors of incompatible observables and is applicable for both pure and mixed states and for arbitrary number of N- dimensional observables. The uncertainty relation for incompatible observables can be explained by geometric relations related to the parallel postulate and the inequalities in Horn's conjecture on Hermitian matrix sum. Practical entanglement criteria are also presented based on the derived uncertainty relations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.