Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability Enhanced Large-Margin Classifier Selection (1701.05672v1)

Published 20 Jan 2017 in stat.ML

Abstract: Stability is an important aspect of a classification procedure because unstable predictions can potentially reduce users' trust in a classification system and also harm the reproducibility of scientific conclusions. The major goal of our work is to introduce a novel concept of classification instability, i.e., decision boundary instability (DBI), and incorporate it with the generalization error (GE) as a standard for selecting the most accurate and stable classifier. Specifically, we implement a two-stage algorithm: (i) initially select a subset of classifiers whose estimated GEs are not significantly different from the minimal estimated GE among all the candidate classifiers; (ii) the optimal classifier is chosen as the one achieving the minimal DBI among the subset selected in stage (i). This general selection principle applies to both linear and nonlinear classifiers. Large-margin classifiers are used as a prototypical example to illustrate the above idea. Our selection method is shown to be consistent in the sense that the optimal classifier simultaneously achieves the minimal GE and the minimal DBI. Various simulations and real examples further demonstrate the advantage of our method over several alternative approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.