Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intra-day Activity Better Predicts Chronic Conditions (1612.01200v1)

Published 4 Dec 2016 in stat.ML and cs.LG

Abstract: In this work we investigate intra-day patterns of activity on a population of 7,261 users of mobile health wearable devices and apps. We show that: (1) using intra-day step and sleep data recorded from passive trackers significantly improves classification performance on self-reported chronic conditions related to mental health and nervous system disorders, (2) Convolutional Neural Networks achieve top classification performance vs. baseline models when trained directly on multivariate time series of activity data, and (3) jointly predicting all condition classes via multi-task learning can be leveraged to extract features that generalize across data sets and achieve the highest classification performance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.