Papers
Topics
Authors
Recent
2000 character limit reached

Hermitian and Gauge-Covariant Hamiltonians for a particle in a magnetic field on Cylindrical and Spherical Surfaces (1610.09663v1)

Published 30 Oct 2016 in quant-ph and cond-mat.mes-hall

Abstract: We construct the Hermitian Schr\"{o}dinger Hamiltonian of spin-less as well as the gauge-covariant Pauli Hamiltonian of spin one-half particles in a magnetic field that are confined to cylindrical and spherical surfaces. The approach does not require the use of involved differential-geometrical methods and is intuitive and physical, relying on the general requirements of Hermicity and gauge-covariance. The surfaces are embedded in the full three-dimensional space and confinement to the surfaces is achieved by strong radial potentials. We identify the Hermitian and gauge-covariant (in the presence of a magnetic field) physical radial momentum in each case and set it to zero upon confinement to the surfaces . The resulting surface Hamiltonians are seen to be automatically Hermitian and gauge-covariant. The well-known geometrical kinetic energy also emerges naturally.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.