Papers
Topics
Authors
Recent
2000 character limit reached

Hamiltonian for a particle in a magnetic field on a curved surface in orthogonal curvilinear coordinates (1601.04151v2)

Published 16 Jan 2016 in quant-ph and cond-mat.mes-hall

Abstract: The Schr\"odinger Hamiltonian of a spin zero particle as well as the Pauli Hamiltonian with spin-orbit coupling included of a spin one-half particle in electromagnetic fields that are confined to a curved surface embedded in a three-dimensional space spanned by a general Orthogonal Curvilinear Coordinate (OCC) are constructed. A new approach, based on the physical argument that upon squeezing the particle to the surface by a potential, then it is the physical gauge-covariant kinematical momentum operator (velocity operator) transverse to the surface that should be dropped from the Hamiltonian(s). In both cases,the resulting Hermitian gauge-invariant Hamiltonian on the surface is free from any reference to the component of the vector potential transverse to the surface, and the approach is completely gauge-independent. In particular, for the Pauli Hamiltonian these results are obtained exactly without any further assumptions or approximations. Explicit covariant plug-and-play formulae for the Schr\"odinger Hamiltonians on the surfaces of a cylinder, a sphere and a torus are derived.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.