Feller property of the multiplicative coalescent with linear deletion (1610.00021v2)
Abstract: We modify the definition of Aldous' multiplicative coalescent process and introduce the multiplicative coalescent with linear deletion (MCLD). A state of this process is a square-summable decreasing sequence of cluster sizes. Pairs of clusters merge with a rate equal to the product of their sizes and clusters are deleted with a rate linearly proportional to their size. We prove that the MCLD is a Feller process. This result is a key ingredient in the description of scaling limits of the evolution of component sizes of the mean field frozen percolation model and the so-called rigid representation of such scaling limits.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.