Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal State Estimation with Measurements Corrupted by Laplace Noise

Published 1 Sep 2016 in math.OC and cs.SY | (1609.00115v1)

Abstract: Optimal state estimation for linear discrete-time systems is considered. Motivated by the literature on differential privacy, the measurements are assumed to be corrupted by Laplace noise. The optimal least mean square error estimate of the state is approximated using a randomized method. The method relies on that the Laplace noise can be rewritten as Gaussian noise scaled by Rayleigh random variable. The probability of the event that the distance between the approximation and the best estimate is smaller than a constant is determined as function of the number of parallel Kalman filters that is used in the randomized method. This estimator is then compared with the optimal linear estimator, the maximum a posteriori (MAP) estimate of the state, and the particle filter.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.