Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nonlinear Kalman Filter Using Cramer Rao Bound

Published 7 Apr 2022 in eess.SP, cs.SY, and eess.SY | (2204.03485v2)

Abstract: This paper studies the optimal state estimation for a dynamic system, whose transfer function can be nonlinear and the input noise can be of arbitrary distribution. Our algorithm differs from the conventional extended Kalman filter (EKF) and the particle filter (PF) in that it estimates not only the state vector but also the Cramer-Rao bound (CRB), which serves as an accuracy indicator. Combining the state estimation, the CRB, and the incoming new measurement, the algorithm updates the state estimation according to the maximum likelihood (ML) criterion. To illustrate the effectiveness of the proposed method for autonomous driving, we apply it to estimate the position and velocity of a vehicle based on the noisy measurements of distance and Doppler offset. Simulation results show that the proposed algorithm can achieve estimation significantly more accurate than the standard EKF and the PF.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.