Papers
Topics
Authors
Recent
2000 character limit reached

Bootstrapping Face Detection with Hard Negative Examples

Published 7 Aug 2016 in cs.CV | (1608.02236v1)

Abstract: Recently significant performance improvement in face detection was made possible by deeply trained convolutional networks. In this report, a novel approach for training state-of-the-art face detector is described. The key is to exploit the idea of hard negative mining and iteratively update the Faster R-CNN based face detector with the hard negatives harvested from a large set of background examples. We demonstrate that our face detector outperforms state-of-the-art detectors on the FDDB dataset, which is the de facto standard for evaluating face detection algorithms.

Citations (57)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.