Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Faces Using Region-based Fully Convolutional Networks (1709.05256v2)

Published 14 Sep 2017 in cs.CV

Abstract: Face detection has achieved great success using the region-based methods. In this report, we propose a region-based face detector applying deep networks in a fully convolutional fashion, named Face R-FCN. Based on Region-based Fully Convolutional Networks (R-FCN), our face detector is more accurate and computational efficient compared with the previous R-CNN based face detectors. In our approach, we adopt the fully convolutional Residual Network (ResNet) as the backbone network. Particularly, We exploit several new techniques including position-sensitive average pooling, multi-scale training and testing and on-line hard example mining strategy to improve the detection accuracy. Over two most popular and challenging face detection benchmarks, FDDB and WIDER FACE, Face R-FCN achieves superior performance over state-of-the-arts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yitong Wang (47 papers)
  2. Xing Ji (30 papers)
  3. Zheng Zhou (93 papers)
  4. Hao Wang (1120 papers)
  5. Zhifeng Li (74 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.