2000 character limit reached
Vector bundles and finite covers
Published 4 Aug 2016 in math.AG | (1608.01711v3)
Abstract: Motivated by the problem of finding algebraic constructions of finite coverings in commutative algebra, the Steinitz realization problem in number theory, and the study of Hurwitz spaces in algebraic geometry, we investigate the vector bundles underlying the structure sheaf of a finite flat branched covering. We prove that, up to a twist, every vector bundle on a smooth projective curve arises from the direct image of the structure sheaf of a smooth, connected branched cover.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.