Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Labeling Topics with Images using Neural Networks (1608.00470v2)

Published 1 Aug 2016 in cs.CL and cs.CV

Abstract: Topics generated by topic models are usually represented by lists of $t$ terms or alternatively using short phrases and images. The current state-of-the-art work on labeling topics using images selects images by re-ranking a small set of candidates for a given topic. In this paper, we present a more generic method that can estimate the degree of association between any arbitrary pair of an unseen topic and image using a deep neural network. Our method has better runtime performance $O(n)$ compared to $O(n2)$ for the current state-of-the-art method, and is also significantly more accurate.

Citations (16)

Summary

We haven't generated a summary for this paper yet.