Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Birkhoff-James orthogonality of linear operators on finite dimensional Banach spaces (1607.08488v1)

Published 28 Jul 2016 in math.FA

Abstract: In this paper we characterize Birkhoff-James orthogonality of linear operators defined on a finite dimensional real Banach space $ \mathbb{X}. $ We also explore the symmetry of Birkhoff-James orthogonality of linear operators defined on $ \mathbb{X}. $ Using some of the related results proved in this paper, we finally prove that $ T \in \mathbb{L}(l_{p}2) (p \geq 2, p \neq \infty) $ is left symmetric with respect to Birkhoff-James orthogonality if and only if $ T $ is the zero operator. We conjecture that the result holds for any finite dimensional strictly convex and smooth real Banach space $ \mathbb{X}, $ in particular for the Banach spaces $ l_{p}{n} (p > 1, p \neq \infty). $

Summary

We haven't generated a summary for this paper yet.