Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of Alzheimer's Disease Structural MRI Data by Deep Learning Convolutional Neural Networks (1607.06583v2)

Published 22 Jul 2016 in cs.CV and cs.AI

Abstract: Recently, machine learning techniques especially predictive modeling and pattern recognition in biomedical sciences from drug delivery system to medical imaging has become one of the important methods which are assisting researchers to have deeper understanding of entire issue and to solve complex medical problems. Deep learning is a powerful machine learning algorithm in classification while extracting low to high-level features. In this paper, we used convolutional neural network to classify Alzheimer's brain from normal healthy brain. The importance of classifying this kind of medical data is to potentially develop a predict model or system in order to recognize the type disease from normal subjects or to estimate the stage of the disease. Classification of clinical data such as Alzheimer's disease has been always challenging and most problematic part has been always selecting the most discriminative features. Using Convolutional Neural Network (CNN) and the famous architecture LeNet-5, we successfully classified structural MRI data of Alzheimer's subjects from normal controls where the accuracy of test data on trained data reached 98.84%. This experiment suggests us the shift and scale invariant features extracted by CNN followed by deep learning classification is most powerful method to distinguish clinical data from healthy data in fMRI. This approach also enables us to expand our methodology to predict more complicated systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Saman Sarraf (9 papers)
  2. Ghassem Tofighi (8 papers)
Citations (78)

Summary

We haven't generated a summary for this paper yet.