Alzheimer's Magnetic Resonance Imaging Classification Using Deep and Meta-Learning Models (2405.12126v1)
Abstract: Deep learning, a cutting-edge machine learning approach, outperforms traditional machine learning in identifying intricate structures in complex high-dimensional data, particularly in the domain of healthcare. This study focuses on classifying Magnetic Resonance Imaging (MRI) data for Alzheimer's disease (AD) by leveraging deep learning techniques characterized by state-of-the-art CNNs. Brain imaging techniques such as MRI have enabled the measurement of pathophysiological brain changes related to Alzheimer's disease. Alzheimer's disease is the leading cause of dementia in the elderly, and it is an irreversible brain illness that causes gradual cognitive function disorder. In this paper, we train some benchmark deep models individually for the approach of the solution and later use an ensembling approach to combine the effect of multiple CNNs towards the observation of higher recall and accuracy. Here, the model's effectiveness is evaluated using various methods, including stacking, majority voting, and the combination of models with high recall values. The majority voting performs better than the alternative modelling approach as the majority voting approach typically reduces the variance in the predictions. We report a test accuracy of 90% with a precision score of 0.90 and a recall score of 0.89 in our proposed approach. In future, this study can be extended to incorporate other types of medical data, including signals, images, and other data. The same or alternative datasets can be used with additional classifiers, neural networks, and AI techniques to enhance Alzheimer's detection.
- A. Association et al., “2016 alzheimer’s disease facts and figures,” Alzheimer’s & Dementia, vol. 12, no. 4, pp. 459–509, 2016.
- G. Vradenburg, “A pivotal moment in alzheimer’s disease and dementia: how global unity of purpose and action can beat the disease by 2025,” Expert review of neurotherapeutics, vol. 15, no. 1, pp. 73–82, 2015.
- R. Casanova, C. T. Whitlow, B. Wagner, J. Williamson, S. A. Shumaker, J. A. Maldjian, and M. A. Espeland, “High dimensional classification of structural mri alzheimer’s disease data based on large scale regularization,” Frontiers in neuroinformatics, vol. 5, p. 22, 2011.
- M. Termenon and M. Graña, “A two stage sequential ensemble applied to the classification of alzheimer’s disease based on mri features,” Neural Processing Letters, vol. 35, no. 1, pp. 1–12, 2012.
- S. Adaszewski, J. Dukart, F. Kherif, R. Frackowiak, B. Draganski, A. D. N. Initiative et al., “How early can we predict alzheimer’s disease using computational anatomy?” Neurobiology of aging, vol. 34, no. 12, pp. 2815–2826, 2013.
- C. Plant, S. J. Teipel, A. Oswald, C. Böhm, T. Meindl, J. Mourao-Miranda, A. W. Bokde, H. Hampel, and M. Ewers, “Automated detection of brain atrophy patterns based on mri for the prediction of alzheimer’s disease,” Neuroimage, vol. 50, no. 1, pp. 162–174, 2010.
- C. Moller, Y. A. Pijnenburg, W. M. van der Flier, A. Versteeg, B. Tijms, J. C. de Munck, A. Hafkemeijer, S. A. Rombouts, J. van der Grond, J. van Swieten et al., “Alzheimer disease and behavioral variant frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis,” Radiology, vol. 279, no. 3, pp. 838–848, 2016.
- X. Liu, D. Tosun, M. W. Weiner, N. Schuff, A. D. N. Initiative et al., “Locally linear embedding (lle) for mri based alzheimer’s disease classification,” Neuroimage, vol. 83, pp. 148–157, 2013.
- C. Salvatore, A. Cerasa, P. Battista, M. C. Gilardi, A. Quattrone, I. Castiglioni, and A. D. N. Initiative, “Magnetic resonance imaging biomarkers for the early diagnosis of alzheimer’s disease: a machine learning approach,” Frontiers in neuroscience, vol. 9, p. 307, 2015.
- I. Beheshti, H. Demirel, A. D. N. Initiative et al., “Probability distribution function-based classification of structural mri for the detection of alzheimer’s disease,” Computers in biology and medicine, vol. 64, pp. 208–216, 2015.
- R. Min, G. Wu, J. Cheng, Q. Wang, D. Shen, and A. D. N. Initiative, “Multi-atlas based representations for alzheimer’s disease diagnosis,” Human brain mapping, vol. 35, no. 10, pp. 5052–5070, 2014.
- M. Liu, D. Zhang, D. Shen, and A. D. N. Initiative, “View-centralized multi-atlas classification for alzheimer’s disease diagnosis,” Human brain mapping, vol. 36, no. 5, pp. 1847–1865, 2015.
- L. Sørensen, C. Igel, N. Liv Hansen, M. Osler, M. Lauritzen, E. Rostrup, M. Nielsen, A. D. N. Initiative, the Australian Imaging Biomarkers, and L. F. S. of Ageing, “Early detection of alzheimer’s disease using m ri hippocampal texture,” Human brain mapping, vol. 37, no. 3, pp. 1148–1161, 2016.
- X. Tang, D. Holland, A. M. Dale, L. Younes, M. I. Miller, A. D. N. Initiative et al., “Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 44, no. 2, pp. 599–611, 2015.
- E. Challis, P. Hurley, L. Serra, M. Bozzali, S. Oliver, and M. Cercignani, “Gaussian process classification of alzheimer’s disease and mild cognitive impairment from resting-state fmri,” NeuroImage, vol. 112, pp. 232–243, 2015.
- B. Jie, D. Zhang, W. Gao, Q. Wang, C.-Y. Wee, and D. Shen, “Integration of network topological and connectivity properties for neuroimaging classification,” IEEE transactions on biomedical engineering, vol. 61, no. 2, pp. 576–589, 2013.
- A. Khazaee, A. Ebrahimzadeh, and A. Babajani-Feremi, “Identifying patients with alzheimer’s disease using resting-state fmri and graph theory,” Clinical Neurophysiology, vol. 126, no. 11, pp. 2132–2141, 2015.
- T. M. Nir, J. E. Villalon-Reina, G. Prasad, N. Jahanshad, S. H. Joshi, A. W. Toga, M. A. Bernstein, C. R. Jack Jr, M. W. Weiner, P. M. Thompson et al., “Diffusion weighted imaging-based maximum density path analysis and classification of alzheimer’s disease,” Neurobiology of aging, vol. 36, pp. S132–S140, 2015.
- G. Prasad, S. H. Joshi, T. M. Nir, A. W. Toga, P. M. Thompson, A. D. N. I. (ADNI et al., “Brain connectivity and novel network measures for alzheimer’s disease classification,” Neurobiology of aging, vol. 36, pp. S121–S131, 2015.
- M. Dyrba, M. Ewers, M. Wegrzyn, I. Kilimann, C. Plant, A. Oswald, T. Meindl, M. Pievani, A. L. Bokde, A. Fellgiebel et al., “Robust automated detection of microstructural white matter degeneration in alzheimer’s disease using machine learning classification of multicenter dti data,” PloS one, vol. 8, no. 5, p. e64925, 2013.
- M. Dyrba, F. Barkhof, A. Fellgiebel, M. Filippi, L. Hausner, K. Hauenstein, T. Kirste, S. J. Teipel, and E. S. Group, “Predicting prodromal alzheimer’s disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion-tensor and magnetic resonance imaging data,” Journal of Neuroimaging, vol. 25, no. 5, pp. 738–747, 2015.
- C.-Y. Wee, P.-T. Yap, W. Li, K. Denny, J. N. Browndyke, G. G. Potter, K. A. Welsh-Bohmer, L. Wang, and D. Shen, “Enriched white matter connectivity networks for accurate identification of mci patients,” Neuroimage, vol. 54, no. 3, pp. 1812–1822, 2011.
- I. O. Korolev, L. L. Symonds, A. C. Bozoki, and A. D. N. Initiative, “Predicting progression from mild cognitive impairment to alzheimer’s dementia using clinical, mri, and plasma biomarkers via probabilistic pattern classification,” PloS one, vol. 11, no. 2, p. e0138866, 2016.
- G. Yu, Y. Liu, and D. Shen, “Graph-guided joint prediction of class label and clinical scores for the alzheimer’s disease,” Brain Structure and Function, vol. 221, no. 7, pp. 3787–3801, 2016.
- F. Li, M. Liu, A. D. N. Initiative et al., “Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks,” Computerized Medical Imaging and Graphics, vol. 70, pp. 101–110, 2018.
- L. Liu, S. Zhao, H. Chen, and A. Wang, “A new machine learning method for identifying alzheimer’s disease,” Simulation Modelling Practice and Theory, vol. 99, p. 102023, 2020.
- G. Battineni, N. Chintalapudi, F. Amenta, and E. Traini, “Deep learning type convolution neural network architecture for multiclass classification of alzheimer’s disease.” in BIOIMAGING, 2021, pp. 209–215.
- K. Oppedal, T. Eftestøl, K. Engan, M. K. Beyer, and D. Aarsland, “Classifying dementia using local binary patterns from different regions in magnetic resonance images,” International journal of biomedical imaging, vol. 2015, 2015.
- B. A. Ardekani, E. Bermudez, A. M. Mubeen, A. H. Bachman, A. D. N. Initiative et al., “Prediction of incipient alzheimer’s disease dementia in patients with mild cognitive impairment,” Journal of Alzheimer’s Disease, vol. 55, no. 1, pp. 269–281, 2017.
- J. Kim, M. Lee, M. K. Lee, S.-M. Wang, N.-Y. Kim, D. W. Kang, Y. H. Um, H.-R. Na, Y. S. Woo, C. U. Lee et al., “Development of random forest algorithm based prediction model of alzheimer’s disease using neurodegeneration pattern,” Psychiatry investigation, vol. 18, no. 1, p. 69, 2021.
- D. Lu, K. Popuri, G. W. Ding, R. Balachandar, and M. F. Beg, “Multimodal and multiscale deep neural networks for the early diagnosis of alzheimer’s disease using structural mr and fdg-pet images,” Scientific reports, vol. 8, no. 1, pp. 1–13, 2018.
- R. S. Kamathe and K. R. Joshi, “A robust optimized feature set based automatic classification of alzheimer’s disease from brain mr images using k-nn and adaboost.” ICTACT Journal on Image & Video Processing, vol. 8, no. 3, 2018.
- A. B. Tufail, A. Abidi, A. M. Siddiqui, and M. S. Younis, “Automatic classification of initial categories of alzheimer’s disease from structural mri phase images: a comparison of psvm, knn and ann methods,” International Journal of Biomedical and Biological Engineering, vol. 6, no. 12, pp. 713–717, 2012.
- K. Aderghal, A. Khvostikov, A. Krylov, J. Benois-Pineau, K. Afdel, and G. Catheline, “Classification of alzheimer disease on imaging modalities with deep cnns using cross-modal transfer learning,” in 2018 IEEE 31st international symposium on computer-based medical systems (CBMS). IEEE, 2018, pp. 345–350.
- A. Ebrahimi-Ghahnavieh, S. Luo, and R. Chiong, “Transfer learning for alzheimer’s disease detection on mri images,” in 2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT). IEEE, 2019, pp. 133–138.
- “Alzheimer’s disease neuroimaging initiative.” [Online]. Available: https://adni.loni.usc.edu/
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
- A. Saeedi, M. Saeedi, and A. Maghsoudi, “A novel and reliable deep learning web-based tool to detect covid-19 infection form chest ct-scan,” 2020.
- F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.
- A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
- K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition [c], proceedings of the 3rd international conference on learning representations,” San Diego:[sn], 2015.
- M. Ahmed, S. Masood, M. Ahmad, and A. A. A. El-Latif, “Intelligent driver drowsiness detection for traffic safety based on multi cnn deep model and facial subsampling,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–10, 2021.
- Nida Nasir (2 papers)
- Muneeb Ahmed (4 papers)
- Neda Afreen (1 paper)
- Mustafa Sameer (2 papers)