Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Reinforcement Learning System to Encourage Physical Activity in Diabetes Patients (1605.04070v1)

Published 13 May 2016 in cs.CY and cs.LG

Abstract: Regular physical activity is known to be beneficial to people suffering from diabetes type 2. Nevertheless, most such people are sedentary. Smartphones create new possibilities for helping people to adhere to their physical activity goals, through continuous monitoring and communication, coupled with personalized feedback. We provided 27 sedentary diabetes type 2 patients with a smartphone-based pedometer and a personal plan for physical activity. Patients were sent SMS messages to encourage physical activity between once a day and once per week. Messages were personalized through a Reinforcement Learning (RL) algorithm which optimized messages to improve each participant's compliance with the activity regimen. The RL algorithm was compared to a static policy for sending messages and to weekly reminders. Our results show that participants who received messages generated by the RL algorithm increased the amount of activity and pace of walking, while the control group patients did not. Patients assigned to the RL algorithm group experienced a superior reduction in blood glucose levels (HbA1c) compared to control policies, and longer participation caused greater reductions in blood glucose levels. The learning algorithm improved gradually in predicting which messages would lead participants to exercise. Our results suggest that a mobile phone application coupled with a learning algorithm can improve adherence to exercise in diabetic patients. As a learning algorithm is automated, and delivers personalized messages, it could be used in large populations of diabetic patients to improve health and glycemic control. Our results can be expanded to other areas where computer-led health coaching of humans may have a positive impact.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Irit Hochberg (2 papers)
  2. Guy Feraru (1 paper)
  3. Mark Kozdoba (17 papers)
  4. Shie Mannor (228 papers)
  5. Moshe Tennenholtz (97 papers)
  6. Elad Yom-Tov (27 papers)
Citations (158)