Papers
Topics
Authors
Recent
Search
2000 character limit reached

Flexible Blood Glucose Control: Offline Reinforcement Learning from Human Feedback

Published 27 Jan 2025 in cs.AI and cs.LG | (2501.15972v1)

Abstract: Reinforcement learning (RL) has demonstrated success in automating insulin dosing in simulated type 1 diabetes (T1D) patients but is currently unable to incorporate patient expertise and preference. This work introduces PAINT (Preference Adaptation for INsulin control in T1D), an original RL framework for learning flexible insulin dosing policies from patient records. PAINT employs a sketch-based approach for reward learning, where past data is annotated with a continuous reward signal to reflect patient's desired outcomes. Labelled data trains a reward model, informing the actions of a novel safety-constrained offline RL algorithm, designed to restrict actions to a safe strategy and enable preference tuning via a sliding scale. In-silico evaluation shows PAINT achieves common glucose goals through simple labelling of desired states, reducing glycaemic risk by 15% over a commercial benchmark. Action labelling can also be used to incorporate patient expertise, demonstrating an ability to pre-empt meals (+10% time-in-range post-meal) and address certain device errors (-1.6% variance post-error) with patient guidance. These results hold under realistic conditions, including limited samples, labelling errors, and intra-patient variability. This work illustrates PAINT's potential in real-world T1D management and more broadly any tasks requiring rapid and precise preference learning under safety constraints.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.