Papers
Topics
Authors
Recent
Search
2000 character limit reached

Testing Shape Restrictions of Discrete Distributions

Published 13 Jul 2015 in cs.DS, cs.CC, math.PR, math.ST, and stat.TH | (1507.03558v3)

Abstract: We study the question of testing structured properties (classes) of discrete distributions. Specifically, given sample access to an arbitrary distribution $D$ over $[n]$ and a property $\mathcal{P}$, the goal is to distinguish between $D\in\mathcal{P}$ and $\ell_1(D,\mathcal{P})>\varepsilon$. We develop a general algorithm for this question, which applies to a large range of "shape-constrained" properties, including monotone, log-concave, $t$-modal, piecewise-polynomial, and Poisson Binomial distributions. Moreover, for all cases considered, our algorithm has near-optimal sample complexity with regard to the domain size and is computationally efficient. For most of these classes, we provide the first non-trivial tester in the literature. In addition, we also describe a generic method to prove lower bounds for this problem, and use it to show our upper bounds are nearly tight. Finally, we extend some of our techniques to tolerant testing, deriving nearly-tight upper and lower bounds for the corresponding questions.

Citations (85)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 22 likes about this paper.