Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing $k$-Modal Distributions: Optimal Algorithms via Reductions (1112.5659v1)

Published 23 Dec 2011 in cs.DS, math.PR, math.ST, and stat.TH

Abstract: We give highly efficient algorithms, and almost matching lower bounds, for a range of basic statistical problems that involve testing and estimating the L_1 distance between two k-modal distributions $p$ and $q$ over the discrete domain ${1,\dots,n}$. More precisely, we consider the following four problems: given sample access to an unknown k-modal distribution $p$, Testing identity to a known or unknown distribution: 1. Determine whether $p = q$ (for an explicitly given k-modal distribution $q$) versus $p$ is $\eps$-far from $q$; 2. Determine whether $p=q$ (where $q$ is available via sample access) versus $p$ is $\eps$-far from $q$; Estimating $L_1$ distance ("tolerant testing'') against a known or unknown distribution: 3. Approximate $d_{TV}(p,q)$ to within additive $\eps$ where $q$ is an explicitly given k-modal distribution $q$; 4. Approximate $d_{TV}(p,q)$ to within additive $\eps$ where $q$ is available via sample access. For each of these four problems we give sub-logarithmic sample algorithms, that we show are tight up to additive $\poly(k)$ and multiplicative $\polylog\log n+\polylog k$ factors. Thus our bounds significantly improve the previous results of \cite{BKR:04}, which were for testing identity of distributions (items (1) and (2) above) in the special cases k=0 (monotone distributions) and k=1 (unimodal distributions) and required $O((\log n)3)$ samples. As our main conceptual contribution, we introduce a new reduction-based approach for distribution-testing problems that lets us obtain all the above results in a unified way. Roughly speaking, this approach enables us to transform various distribution testing problems for k-modal distributions over ${1,\dots,n}$ to the corresponding distribution testing problems for unrestricted distributions over a much smaller domain ${1,\dots,\ell}$ where $\ell = O(k \log n).$

Citations (80)

Summary

We haven't generated a summary for this paper yet.