Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust criterion for the existence of nonhyperbolic ergodic measures

Published 23 Feb 2015 in math.DS | (1502.06535v1)

Abstract: We give explicit $C1$-open conditions that ensure that a diffeomorphism possesses a nonhyperbolic ergodic measure with positive entropy. Actually, our criterion provides the existence of a partially hyperbolic compact set with one-dimensional center and positive topological entropy on which the center Lyapunov exponent vanishes uniformly. The conditions of the criterion are met on a $C1$-dense and open subset of the set of a diffeomorphisms having a robust cycle. As a corollary, there exists a $C1$-open and dense subset of the set of non-Anosov robustly transitive diffeomorphisms consisting of systems with nonhyperbolic ergodic measures with positive entropy. The criterion is based on a notion of a blender defined dynamically in terms of strict invariance of a family of discs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.