A criterion for zero averages and full support of ergodic measures (1609.07764v1)
Abstract: Consider a homeomorphism $f$ defined on a compact metric space $X$ and a continuous map $\phi\colon X \to \mathbb{R}$. We provide an abstract criterion, called \emph{control at any scale with a long sparse tail} for a point $x\in X$ and the map $\phi$, that guarantees that any weak$\ast$ limit measure $\mu$ of the Birkhoff average of Dirac measures $\frac1n\sum_0{n-1}\delta(fi(x))$ is such that $\mu$-almost every point $y$ has a dense orbit in $X$ and the Birkhoff average of $\phi$ along the orbit of $y$ is zero. As an illustration of the strength of this criterion, we prove that the diffeomorphisms with nonhyperbolic ergodic measures form a $C1$-open and dense subset of the set of robustly transitive partially hyperbolic diffeomorphisms with one dimensional nonhyperbolic central direction. We also obtain applications for nonhyperbolic homoclinic classes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.