Papers
Topics
Authors
Recent
Search
2000 character limit reached

Link homology and equivariant gauge theory

Published 10 Feb 2015 in math.GT | (1502.03116v2)

Abstract: The singular instanton Floer homology was defined by Kronheimer and Mrowka in connection with their proof that the Khovanov homology is an unknot detector. We study this theory for knots and two-component links using equivariant gauge theory on their double branched covers. We show that the special generator in the singular instanton Floer homology of a knot is graded by the knot signature mod 4, thereby providing a purely topological way of fixing the absolute grading in the theory. Our approach also results in explicit computations of the generators and gradings of the singular instanton Floer chain complex for several classes of knots with simple double branched covers, such as two-bridge knots, torus knots, and Montesinos knots, as well as for several families of two-components links.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.