Decomposing sutured monopole and Instanton Floer homologies (1910.10842v3)
Abstract: In this paper, we generalize the work of the second author and prove a grading shifting property, in sutured monopole and instanton Floer theories, for general balanced sutured manifolds. This result has a few consequences. First, we offer an algorithm that computes the Floer homologies of a family of sutured handle-bodies. Second, we obtain a canonical decomposition of sutured monopole and instanton Floer homologies and build polytopes for these two theories, which was initially achieved by Juh\'asz for sutured (Heegaard) Floer homology. Third, we establish a Thurston-norm detection result for monopole and instanton knot Floer homologies, which were introduced by Kronheimer and Mrowka. The same result was originally proved by Ozsv\'ath and Szab\'o for link Floer homology. Last, we generalize the construction of minus versions of monopole and instanton knot Floer homology, which was initially done for knots by the second author, to the case of links. Along with the construction of polytopes, we also proved that, for a balanced sutured manifold with vanishing second homology, the rank of the sutured monopole or instanton Floer homology bounds the depth of the balanced sutured manifold. As a corollary, we obtain an independent proof that monopole and instanton knot Floer homologies, as mentioned above, both detect fibred knots in $S3$. This result was originally achieved by Kronheimer and Mrowka.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.