Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Lie enveloping algebra of a post-Lie algebra (1410.6350v2)

Published 23 Oct 2014 in math.NA and math.QA

Abstract: We consider pairs of Lie algebras $g$ and $\bar{g}$, defined over a common vector space, where the Lie brackets of $g$ and $\bar{g}$ are related via a post-Lie algebra structure. The latter can be extended to the Lie enveloping algebra $U(g)$. This permits us to define another associative product on $U(g)$, which gives rise to a Hopf algebra isomorphism between $U(\bar{g})$ and a new Hopf algebra assembled from $U(g)$ with the new product. For the free post-Lie algebra these constructions provide a refined understanding of a fundamental Hopf algebra appearing in the theory of numerical integration methods for differential equations on manifolds. In the pre-Lie setting, the algebraic point of view developed here also provides a concise way to develop Butcher's order theory for Runge--Kutta methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.