Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enveloping algebra is a Yetter--Drinfeld module algebra over Hopf algebra of regular functions on the automorphism group of a Lie algebra (2308.15467v2)

Published 29 Aug 2023 in math.QA

Abstract: We present an elementary construction of a (highly degenerate) Hopf pairing between the universal enveloping algebra $U(\mathfrak{g})$ of a finite-dimensional Lie algebra $\mathfrak{g}$ over arbitrary field $\mathbf{k}$ and the Hopf algebra $\mathcal{O}(\mathrm{Aut}(\mathfrak{g}))$ of regular functions on the automorphism group of $\mathfrak{g}$. This pairing induces a Hopf action of $\mathcal{O}(\mathrm{Aut}(\mathfrak{g}))$ on $U(\mathfrak{g})$ which together with an explicitly given coaction makes $U(\mathfrak{g})$ into a braided commutative Yetter--Drinfeld $\mathcal{O}(\mathrm{Aut}(\mathfrak{g}))$-module algebra. From these data one constructs a Hopf algebroid structure on the smash product algebra $\mathcal{O}(\mathrm{Aut}(\mathfrak{g}))\sharp U(\mathfrak{g})$ retaining essential features from earlier constructions of a Hopf algebroid structure on infinite-dimensional versions of Heisenberg double of $U(\mathfrak{g})$, including a noncommutative phase space of Lie algebra type, while avoiding the need of completed tensor products. We prove a slightly more general result where algebra $\mathcal{O}(\mathrm{Aut}(\mathfrak{g}))$ is replaced by $\mathcal{O}(\mathrm{Aut}(\mathfrak{h}))$ and where $\mathfrak{h}$ is any finite-dimensional Leibniz algebra having $\mathfrak{g}$ as its maximal Lie algebra quotient.

Summary

We haven't generated a summary for this paper yet.