Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rigidity results for Lie algebras admitting a post-Lie algebra structure (2205.04218v1)

Published 9 May 2022 in math.RA

Abstract: We study rigidity questions for pairs of Lie algebras $(\mathfrak{g},\mathfrak{n})$ admitting a post-Lie algebra structure. We show that if $\mathfrak{g}$ is semisimple and $\mathfrak{n}$ is arbitrary, then we have rigidity in the sense that $\mathfrak{g}$ and $\mathfrak{n}$ must be isomorphic. The proof uses a result on the decomposition of a Lie algebra $\mathfrak{g}=\mathfrak{s}_1\dotplus \mathfrak{s}_2$ as the direct vector space sum of two semisimple subalgebras. We show that $\mathfrak{g}$ must be semisimple and hence isomorphic to the direct Lie algebra sum $\mathfrak{g}\cong \mathfrak{s}_1\oplus \mathfrak{s}_2$. This solves some open existence questions for post-Lie algebra structures on pairs of Lie algebras $(\mathfrak{g},\mathfrak{n})$. We prove additional existence results for pairs $(\mathfrak{g},\mathfrak{n})$, where $\mathfrak{g}$ is complete, and for pairs, where $\mathfrak{g}$ is reductive with $1$-dimensional center and $\mathfrak{n}$ is solvable or nilpotent.

Summary

We haven't generated a summary for this paper yet.