Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Bi-l0-l2-Norm Regularization for Blind Motion Deblurring (1408.4712v3)

Published 20 Aug 2014 in cs.CV

Abstract: In blind motion deblurring, leading methods today tend towards highly non-convex approximations of the l0-norm, especially in the image regularization term. In this paper, we propose a simple, effective and fast approach for the estimation of the motion blur-kernel, through a bi-l0-l2-norm regularization imposed on both the intermediate sharp image and the blur-kernel. Compared with existing methods, the proposed regularization is shown to be more effective and robust, leading to a more accurate motion blur-kernel and a better final restored image. A fast numerical scheme is deployed for alternatingly computing the sharp image and the blur-kernel, by coupling the operator splitting and augmented Lagrangian methods. Experimental results on both a benchmark image dataset and real-world motion blurred images show that the proposed approach is highly competitive with state-of-the- art methods in both deblurring effectiveness and computational efficiency.

Citations (53)

Summary

We haven't generated a summary for this paper yet.