Papers
Topics
Authors
Recent
Search
2000 character limit reached

Non-uniform Blur Kernel Estimation via Adaptive Basis Decomposition

Published 1 Feb 2021 in cs.CV, cs.AI, and cs.LG | (2102.01026v2)

Abstract: Motion blur estimation remains an important task for scene analysis and image restoration. In recent years, the removal of motion blur in photographs has seen impressive progress in the hands of deep learning-based methods, trained to map directly from blurry to sharp images. Characterization of the motion blur, on the other hand, has received less attention, and progress in model-based methods for deblurring lags behind that of data-driven end-to-end approaches. In this work we revisit the problem of characterizing dense, non-uniform motion blur in a single image and propose a general non-parametric model for this task. Given a blurry image, a neural network is trained to estimate a set of image-adaptive basis motion kernels as well as the mixing coefficients at the pixel level, producing a per-pixel motion blur field. We show that our approach overcomes the limitations of existing non-uniform motion blur estimation methods and leads to extremely accurate motion blur kernels. When applied to real motion-blurred images, a variational non-uniform blur removal method fed with the estimated blur kernels produces high-quality restored images. Qualitative and quantitative evaluation shows that these results are competitive or superior to results obtained with existing end-to-end deep learning (DL) based methods, thus bridging the gap between model-based and data-driven approaches.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.