Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Automated Discovery of Artistic Influence (1408.3218v1)

Published 14 Aug 2014 in cs.CV and cs.LG

Abstract: Considering the huge amount of art pieces that exist, there is valuable information to be discovered. Examining a painting, an expert can determine its style, genre, and the time period that the painting belongs. One important task for art historians is to find influences and connections between artists. Is influence a task that a computer can measure? The contribution of this paper is in exploring the problem of computer-automated suggestion of influences between artists, a problem that was not addressed before in a general setting. We first present a comparative study of different classification methodologies for the task of fine-art style classification. A two-level comparative study is performed for this classification problem. The first level reviews the performance of discriminative vs. generative models, while the second level touches the features aspect of the paintings and compares semantic-level features vs. low-level and intermediate-level features present in the painting. Then, we investigate the question "Who influenced this artist?" by looking at his masterpieces and comparing them to others. We pose this interesting question as a knowledge discovery problem. For this purpose, we investigated several painting-similarity and artist-similarity measures. As a result, we provide a visualization of artists (Map of Artists) based on the similarity between their works

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Babak Saleh (9 papers)
  2. Kanako Abe (1 paper)
  3. Ravneet Singh Arora (2 papers)
  4. Ahmed Elgammal (55 papers)
Citations (82)

Summary

We haven't generated a summary for this paper yet.