Papers
Topics
Authors
Recent
Search
2000 character limit reached

Machine: The New Art Connoisseur

Published 22 Nov 2019 in cs.AI and cs.CV | (1911.10091v2)

Abstract: The process of identifying and understanding art styles to discover artistic influences is essential to the study of art history. Traditionally, trained experts review fine details of the works and compare them to other known works. To automate and scale this task, we use several state-of-the-art CNN architectures to explore how a machine may help perceive and quantify art styles. This study explores: (1) How accurately can a machine classify art styles? (2) What may be the underlying relationships among different styles and artists? To help answer the first question, our best-performing model using Inception V3 achieves a 9-class classification accuracy of 88.35%, which outperforms the model in Elgammal et al.'s study by more than 20 percent. Visualizations using Grad-CAM heat maps confirm that the model correctly focuses on the characteristic parts of paintings. To help address the second question, we conduct network analysis on the influences among styles and artists by extracting 512 features from the best-performing classification model. Through 2D and 3D T-SNE visualizations, we observe clear chronological patterns of development and separation among the art styles. The network analysis also appears to show anticipated artist level connections from an art historical perspective. This technique appears to help identify some previously unknown linkages that may shed light upon new directions for further exploration by art historians. We hope that humans and machines working in concert may bring new opportunities to the field.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.