Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Analysis of Democratic Voting Principles used in Distributed Greedy Algorithms (1407.4491v1)

Published 16 Jul 2014 in cs.IT and math.IT

Abstract: A key aspect for any greedy pursuit algorithm used in compressed sensing is a good support-set detection method. For distributed compressed sensing, we consider a setup where many sensors measure sparse signals that are correlated via the existence of a signals' intersection support-set. This intersection support-set is called the joint support-set. Estimation of the joint support-set has a high impact on the performance of a distributed greedy pursuit algorithm. This estimation can be achieved by exchanging local support-set estimates followed by a (consensus) voting method. In this paper we endeavor for a probabilistic analysis of two democratic voting principle that we call majority and consensus voting. In our analysis, we first model the input/output relation of a greedy algorithm (executed locally in a sensor) by a single parameter known as probability of miss. Based on this model, we analyze the voting principles and prove that the democratic voting principle has a merit to detect the joint support-set.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.