Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Design and Analysis of a Greedy Pursuit for Distributed Compressed Sensing (1403.6974v3)

Published 27 Mar 2014 in cs.IT and math.IT

Abstract: We consider a distributed compressed sensing scenario where many sensors measure correlated sparse signals and the sensors are connected through a network. Correlation between sparse signals is modeled by a partial common support-set. For such a scenario, the main objective of this paper is to develop a greedy pursuit algorithm. We develop a distributed parallel pursuit (DIPP) algorithm based on exchange of information about estimated support-sets at sensors. The exchange of information helps to improve estimation of the partial common support-set, that in turn helps to gradually improve estimation of support-sets in all sensors, leading to a better quality reconstruction performance. We provide restricted isometry property (RIP) based theoretical analysis on the algorithm's convergence and reconstruction performance. Under certain theoretical requirements on the quality of information exchange over network and RIP parameters of sensor nodes, we show that the DIPP algorithm converges to a performance level that depends on a scaled additive measurement noise power (convergence in theory) where the scaling coefficient is a function of RIP parameters and information processing quality parameters. Using simulations, we show practical reconstruction performance of DIPP vis-a-vis amount of undersampling, signal-to-measurement-noise ratios and network-connectivity conditions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube