Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Distributed Greedy Pursuit Algorithms (1306.6815v2)

Published 28 Jun 2013 in cs.IT and math.IT

Abstract: For compressed sensing over arbitrarily connected networks, we consider the problem of estimating underlying sparse signals in a distributed manner. We introduce a new signal model that helps to describe inter-signal correlation among connected nodes. Based on this signal model along with a brief survey of existing greedy algorithms, we develop distributed greedy algorithms with low communication overhead. Incorporating appropriate modifications, we design two new distributed algorithms where the local algorithms are based on appropriately modified existing orthogonal matching pursuit and subspace pursuit. Further, by combining advantages of these two local algorithms, we design a new greedy algorithm that is well suited for a distributed scenario. By extensive simulations we demonstrate that the new algorithms in a sparsely connected network provide good performance, close to the performance of a centralized greedy solution.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.