Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating Near-Infrared Information into Semantic Image Segmentation (1406.6147v1)

Published 24 Jun 2014 in cs.CV

Abstract: Recent progress in computational photography has shown that we can acquire near-infrared (NIR) information in addition to the normal visible (RGB) band, with only slight modifications to standard digital cameras. Due to the proximity of the NIR band to visible radiation, NIR images share many properties with visible images. However, as a result of the material dependent reflection in the NIR part of the spectrum, such images reveal different characteristics of the scene. We investigate how to effectively exploit these differences to improve performance on the semantic image segmentation task. Based on a state-of-the-art segmentation framework and a novel manually segmented image database (both indoor and outdoor scenes) that contain 4-channel images (RGB+NIR), we study how to best incorporate the specific characteristics of the NIR response. We show that adding NIR leads to improved performance for classes that correspond to a specific type of material in both outdoor and indoor scenes. We also discuss the results with respect to the physical properties of the NIR response.

Citations (14)

Summary

We haven't generated a summary for this paper yet.