Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Does V-NIR based Image Enhancement Come with Better Features? (1608.06521v2)

Published 23 Aug 2016 in cs.CV

Abstract: Image enhancement using the visible (V) and near-infrared (NIR) usually enhances useful image details. The enhanced images are evaluated by observers perception, instead of quantitative feature evaluation. Thus, can we say that these enhanced images using NIR information has better features in comparison to the computed features in the Red, Green, and Blue color channels directly? In this work, we present a new method to enhance the visible images using NIR information via edge-preserving filters, and also investigate which method performs best from a image features standpoint. We then show that our proposed enhancement method produces more stable features than the existing state-of-the-art methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.