Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Resource Allocation with Semi-Bandit Feedback (1406.3840v1)

Published 15 Jun 2014 in cs.LG

Abstract: We study a sequential resource allocation problem involving a fixed number of recurring jobs. At each time-step the manager should distribute available resources among the jobs in order to maximise the expected number of completed jobs. Allocating more resources to a given job increases the probability that it completes, but with a cut-off. Specifically, we assume a linear model where the probability increases linearly until it equals one, after which allocating additional resources is wasteful. We assume the difficulty of each job is unknown and present the first algorithm for this problem and prove upper and lower bounds on its regret. Despite its apparent simplicity, the problem has a rich structure: we show that an appropriate optimistic algorithm can improve its learning speed dramatically beyond the results one normally expects for similar problems as the problem becomes resource-laden.

Citations (25)

Summary

We haven't generated a summary for this paper yet.