Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Better Resource Allocation Algorithm with Semi-Bandit Feedback (1803.10415v1)

Published 28 Mar 2018 in cs.LG and stat.ML

Abstract: We study a sequential resource allocation problem between a fixed number of arms. On each iteration the algorithm distributes a resource among the arms in order to maximize the expected success rate. Allocating more of the resource to a given arm increases the probability that it succeeds, yet with a cut-off. We follow Lattimore et al. (2014) and assume that the probability increases linearly until it equals one, after which allocating more of the resource is wasteful. These cut-off values are fixed and unknown to the learner. We present an algorithm for this problem and prove a regret upper bound of $O(\log n)$ improving over the best known bound of $O(\log2 n)$. Lower bounds we prove show that our upper bound is tight. Simulations demonstrate the superiority of our algorithm.

Citations (13)

Summary

We haven't generated a summary for this paper yet.