Papers
Topics
Authors
Recent
Search
2000 character limit reached

Binomial Difference Ideal and Toric Difference Variety

Published 30 Apr 2014 in math.AG and cs.SC | (1404.7580v2)

Abstract: In this paper, the concepts of binomial difference ideals and toric difference varieties are defined and their properties are proved. Two canonical representations for Laurent binomial difference ideals are given using the reduced Groebner basis of Z[x]-lattices and regular and coherent difference ascending chains, respectively. Criteria for a Laurent binomial difference ideal to be reflexive, prime, well-mixed, perfect, and toric are given in terms of their support lattices which are Z[x]-lattices. The reflexive, well-mixed, and perfect closures of a Laurent binomial difference ideal are shown to be binomial. Four equivalent definitions for toric difference varieties are presented. Finally, algorithms are given to check whether a given Laurent binomial difference ideal I is reflexive, prime, well-mixed, perfect, or toric, and in the negative case, to compute the reflexive, well-mixed, and perfect closures of I. An algorithm is given to decompose a finitely generated perfect binomial difference ideal as the intersection of reflexive prime binomial difference ideals.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.