Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Binomial ideals in quantum tori and quantum affine spaces (2311.15191v2)

Published 26 Nov 2023 in math.QA and math.RA

Abstract: The article targets binomial ideals in quantum tori and quantum affine spaces. First, noncommutative analogs of known results for commutative (Laurent) polynomial rings are obtained, including the following: Under the assumption of an algebraically closed base field, it is proved that primitive ideals are binomial, as are radicals of binomial ideals and prime ideals minimal over binomial ideals. In the case of a quantum torus $\mathcal{T}{\bf{q}}$, the results are strongest: In this situation, the binomial ideals are parametrized by characters on sublattices of the free abelian group whose group algebra is the center of $\mathcal{T}{\bf{q}}$; the sublattice-character pairs corresponding to primitive ideals as well as to radicals and minimal primes of binomial ideals are determined. As for occurrences of binomial ideals in quantum algebras: It is shown that cocycle-twisted group algebras of finitely generated abelian groups are quotients of quantum tori modulo binomial ideals. Another appearance is as follows: Cocycle-twisted semigroup algebras of finitely generated commutative monoids, as well as quantum affine toric varieties, are quotients of quantum affine spaces modulo certain types of binomial ideals.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com