Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A binary differential evolution algorithm learning from explored solutions (1401.1124v2)

Published 6 Jan 2014 in cs.NE

Abstract: Although real-coded differential evolution (DE) algorithms can perform well on continuous optimization problems (CoOPs), it is still a challenging task to design an efficient binary-coded DE algorithm. Inspired by the learning mechanism of particle swarm optimization (PSO) algorithms, we propose a binary learning differential evolution (BLDE) algorithm that can efficiently locate the global optimal solutions by learning from the last population. Then, we theoretically prove the global convergence of BLDE, and compare it with some existing binary-coded evolutionary algorithms (EAs) via numerical experiments. Numerical results show that BLDE is competitive to the compared EAs, and meanwhile, further study is performed via the change curves of a renewal metric and a refinement metric to investigate why BLDE cannot outperform some compared EAs for several selected benchmark problems. Finally, we employ BLDE solving the unit commitment problem (UCP) in power systems to show its applicability in practical problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yu Chen (506 papers)
  2. Weicheng Xie (30 papers)
  3. Xiufen Zou (4 papers)
Citations (70)

Summary

We haven't generated a summary for this paper yet.