Papers
Topics
Authors
Recent
Search
2000 character limit reached

Working Principles of Binary Differential Evolution

Published 9 Dec 2018 in cs.NE | (1812.03513v1)

Abstract: We conduct a first fundamental analysis of the working principles of binary differential evolution (BDE), an optimization heuristic for binary decision variables that was derived by Gong and Tuson (2007) from the very successful classic differential evolution (DE) for continuous optimization. We show that unlike most other optimization paradigms, it is stable in the sense that neutral bit values are sampled with probability close to $1/2$ for a long time. This is generally a desirable property, however, it makes it harder to find the optima for decision variables with small influence on the objective function. This can result in an optimization time exponential in the dimension when optimizing simple symmetric functions like OneMax. On the positive side, BDE quickly detects and optimizes the most important decision variables. For example, dominant bits converge to the optimal value in time logarithmic in the population size. This enables BDE to optimize the most important bits very fast. Overall, our results indicate that BDE is an interesting optimization paradigm having characteristics significantly different from classic evolutionary algorithms or estimation-of-distribution algorithms (EDAs). On the technical side, we observe that the strong stochastic dependencies in the random experiment describing a run of BDE prevent us from proving all desired results with the mathematical rigor that was successfully used in the analysis of other evolutionary algorithms. Inspired by mean-field approaches in statistical physics we propose a more independent variant of BDE, show experimentally its similarity to BDE, and prove some statements rigorously only for the independent variant. Such a semi-rigorous approach might be interesting for other problems in evolutionary computation where purely mathematical methods failed so far.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.